Embeddings API
An embedding is a vector representation of a piece of data. Text embeddings are often used to capture the semantic meaning of a piece of text, where the distance between text embedding vectors is used to measure their relatedness.
Create Embeddings
Endpoint to create an embedding vector representation of a text input.
POST https://api.relax.ai/v1/embeddings
Example Request
from relaxai import Relaxai
client = Relaxai(api_key=RELAX_API_KEY)
response = client.embeddings.create_embedding( model="Mistral-7b-embedding", input="The capital city of the UK is London", encoding_format="float")
print(response)
import { Relaxai } from 'relaxai';
const relaxai = new Relaxai({apiKey: RELAX_API_KEY});
const embeddingResponse = await client.embeddings.createEmbedding({input: "The capital city of the UK is London",model: "Mistral-7b-embedding",});
console.log(embeddingResponse.data);
package main
import ("context""fmt"
"github.com/relax-ai/go-sdk""github.com/relax-ai/go-sdk/option")
func main() {client := relaxai.NewClient( option.WithAPIKey("RELAX_API_KEY"),)embeddingResponse, err := client.Embeddings.NewEmbedding(context.TODO(), relaxai.EmbeddingNewEmbeddingParams{ EmbeddingRequest: relaxai.EmbeddingRequestParam{ Input: map[string]interface{}{ }, Model: "Mistral-7b-embedding", },})if err != nil { panic(err.Error())}fmt.Printf("%+v", embeddingResponse.Data)}
curl https://api.relax.ai/v1/embeddings \-H "Authorization: Bearer $RELAX_API_KEY" \-H "Content-Type: application/json" \-d '{ "input": "The capital city of the UK is London", "model": "Mistral-7b-embedding", "encoding_format": "float"}'
from openai import OpenAI
client = OpenAI(api_key=RELAX_API_KEY,base_url='https://api.relax.ai/v1/')
response = client.embeddings.create(model="Mistral-7b-embedding",input="The capital city of the UK is London",encoding_format="float")
print(response)
import OpenAI from "openai";
const openai = new OpenAI({apiKey: RELAX_API_KEY,baseURL: 'https://api.relax.ai/v1/'});
async function main() {const embedding = await openai.embeddings.create({ model: "Mistral-7b-embedding", input: "The capital city of the UK is London", encoding_format: "float",});
console.log(embedding);}
main();
curl https://api.relax.ai/v1/embeddings \-H "Authorization: Bearer $RELAX_API_KEY" \-H "Content-Type: application/json" \-d '{ "input": "The capital city of the UK is London", "model": "Mistral-7b-embedding", "encoding_format": "float"}'
Response
Returns an embedding object, which contains the embedding vector of the text input.
Embedding Response
{ "object": "list", "data": [ { "object": "embedding", "embedding": [ -0.002363205, 0.005371202, ... ], "index": 0 } ], "model": "Mistral-7b-embedding", "usage": { "prompt_tokens": 10, "completion_tokens": 0, "total_tokens": 10, "prompt_tokens_details": null, "completion_tokens_details": null }}
Request Body
The following parameters can be included in the request body:
Create Embeddings Request Body
model
- Type: string
- Required: Yes
- Description: The model name to use for generating the completion.
input
- Type: string or array
- Required: Yes
- Description: Input text to embed. To embed multiple inputs in a single request, pass an array of strings or array of token arrays.
The input must not exceed the max token length of the model (4096 tokens for the
Mistral-7b-embedding
model) and cannot be an empty string.
encoding_format
- Type: string
- Required: No
- Description: Embeddings vector format. Either
float
orbase64
.